1,781 research outputs found

    A multiblock grid generation technique applied to a jet engine configuration

    Get PDF
    Techniques are presented for quickly finding a multiblock grid for a 2D geometrically complex domain from geometrical boundary data. An automated technique for determining a block decomposition of the domain is explained. Techniques for representing this domain decomposition and transforming it are also presented. Further, a linear optimization method may be used to solve the equations which determine grid dimensions within the block decomposition. These algorithms automate many stages in the domain decomposition and grid formation process and limit the need for human intervention and inputs. They are demonstrated for the meridional or throughflow geometry of a bladed jet engine configuration

    A two-dimensional Euler solution for an unbladed jet engine configuration

    Get PDF
    A two dimensional, nonaxisymmetric Euler solution in a geometry representative of a jet engine configuration without blades is presented. The domain, including internal and external flow, is covered with a multiblock grid. In order to construct this grid, a domain decomposition technique is used to subdivide the domain, and smooth grids are dimensioned and placed in each block. The Euler solution is verified by examining five theoretical properties. The result demonstrates techniques for performing numerical solutions in complex geometries and provides a foundation for complete engine throughflow calculations

    A Historical Review of Cermet Fuel Development and the Engine Performance Implications

    Get PDF
    This paper reviews test data for cermet fuel samples developed in the 1960's to better quantify Nuclear Thermal Propulsion (NTP) cermet engine performance, and to better understand contemporary fuel testing results. Over 200 cermet (W-UO2) samples were tested by thermally cycling to 2500 deg (2770 K) in hydrogen. The data indicates two issues at high temperatures: the vaporization rate of UO2 and the chemical stability of UO2. The data show that cladding and chemical stabilizers each result in large, order of magnitude improvements in high temperature performance, while other approaches yield smaller, incremental improvements. Data is very limited above 2770 K, and this complicates predictions of engine performance at high Isp. The paper considers how this material performance data translates into engine performance. In particular, the location of maximum temperature within the fuel element and the effect of heat deposition rate are examined

    Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    Get PDF
    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning

    Thermal, Fluid and Neutronic Analysis of an LEU Nuclear Thermal Propulsion Core

    Get PDF
    This paper describes the use of detailed multidisciplinary fluid/thermal/ structural/neutronic simulations to predict performance of the nuclear fuel elements of a Nuclear Thermal Propulsion rocket reactor. To achieve maximum performance, a rocket reactor's fuel must operate near thermal hydraulic, structural and neutronic limits where multidisciplinary interactions are important. Yet physical testing is expensive, time- consuming and risky. Lower-fidelity correlations (heat transfer) and simulations have always existed for design, and one role of detailed numerical analysis is to confirm correlation validity and accuracy. For complex and subtle issues, detailed numerical simulations may prove their value. The paper gives examples of both of these situations. Limitations of the methods and potential extensions will be explored

    A Semantic Analysis Method for Scientific and Engineering Code

    Get PDF
    This paper develops a procedure to statically analyze aspects of the meaning or semantics of scientific and engineering code. The analysis involves adding semantic declarations to a user's code and parsing this semantic knowledge with the original code using multiple expert parsers. These semantic parsers are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. In practice, a user would submit code with semantic declarations of primitive variables to the analysis procedure, and its semantic parsers would automatically recognize and document some static, semantic concepts and locate some program semantic errors. A prototype implementation of this analysis procedure is demonstrated. Further, the relationship between the fundamental algebraic manipulations of equations and the parsing of expressions is explained. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes

    Euler solutions for an unbladed jet engine configuration

    Get PDF
    A Euler solution for an axisymmetric jet engine configuration without blade effects is presented. The Euler equations are solved on a multiblock grid which covers a domain including the inlet, bypass duct, core passage, nozzle, and the far field surrounding the engine. The simulation is verified by considering five theoretical properties of the solution. The solution demonstrates both multiblock grid generation techniques and a foundation for a full jet engine throughflow calculation

    Second order hydrodynamic coefficients from kinetic theory

    Full text link
    In a relativistic setting, hydrodynamic calculations which include shear viscosity (which is first order in an expansion in gradients of the flow velocity) are unstable and acausal unless they also include terms to second order in gradients. To date such terms have only been computed in supersymmetric N=4 Super-Yang-Mills theory at infinite coupling. Here we compute these second-order hydrodynamic coefficients in weakly coupled QCD, perturbatively to leading order in the QCD coupling, using kinetic theory. We also compute them in QED and scalar lambda phi^4 theory.Comment: 31 pages including 3 figures. Corrected for algebraic error which affected the coefficient lambda_1, which turns out to be positive and about twice the magnitude previously foun

    The Landform Reference Ontology (LFRO): A Foundation for Exploring Linguistic and Geospatial Conceptualization of Landforms (Short Paper)

    Get PDF

    TNFα-mediated Hsd11b1 binding of NF-κB p65 is associated with suppression of 11β-HSD1 in muscle

    Get PDF
    The activity of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive cortisone (11-dehydrocorticosterone (11-DHC)) (in mice) into the active glucocorticoid (GC) cortisol (corticosterone in mice), can amplify tissue GC exposure. Elevated TNFα is a common feature in a range of inflammatory disorders and is detrimental to muscle function in diseases such as rheumatoid arthritis and chronic obstructive pulmonary disease.We have previously demonstrated that 11β-HSD1 activity is increased in the mesenchymal stromal cells (MSCs) by TNFα treatment and suggested that this is an autoregulatory anti-inflammatory mechanism. This upregulation was mediated by the P2 promoter of the Hsd11β1 gene and was dependent on the NF-kB signalling pathway. In this study, we show that in contrast to MSCs, in differentiated C2C12 and primary murine myotubes, TNFα suppresses Hsd11β1 mRNA expression and activity through the utilization of the alternative P1 promoter. As with MSCs, in response to TNFα treatment, NF-κB p65 was translocated to the nucleus. However, ChIP analysis demonstrated that the direct binding was seen at positionK218 toK245 bp of the Hsd11β1 gene's P1 promoter but not at the P2 promoter. These studies demonstrate the existence of differential regulation of 11β-HSD1 expression in muscle cells through TNFα/p65 signalling and the P1 promoter, further enhancing our understanding of the role of 11β-HSD1 in the context of inflammatory disease
    • …
    corecore